Parent Doc: Python Documentation
API reference
Module/Function/Attribute | Description | Example |
---|---|---|
pandas.testing.assert_frame_equal | Check that left and right DataFrame are equal. This function is intended to compare two DataFrames and output any differences. It is mostly intended for use in unit tests. Additional parameters allow varying the strictness of the equality checks performed. API reference | Especially handy when comparing floating point values, where we can leverage check_exact and relative or absolute tolerance (rtol or atol ) parameters.To compare without tolerance, we can just use `df1.equals(df2). |
pandas.date_range | Pandas | |
pandas.set_option | Sets the value of the specified option. Available options: - compute - display - … My most used ones are - display.max_rows - display.max_columns - display.float_format API reference | |
pandas.option.context | Context manager to temporarily set options in the with statement context.Need to invoke as need to invoke as option_context(pat, val, [(pat, val), ...]) API reference | Pandas |
pandas.merge | Merge DataFrame or named Series objects with a database-style join. A named Series object is treated as a DataFrame with a single named column. The join is done on columns or indexes. If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on. When performing a cross merge, no column specifications to merge on are allowed. API reference |
Examples
Generate date range
import pandas as pd
start_date_str = '2025-05-01'
end_date_str = '2025-05-15'
date_range = pd.date_range(start=start_date_str, end=end_date_str, freq='D')
date_range
DatetimeIndex(['2025-05-01', '2025-05-02', '2025-05-03', '2025-05-04',
'2025-05-05', '2025-05-06', '2025-05-07', '2025-05-08',
'2025-05-09', '2025-05-10', '2025-05-11', '2025-05-12',
'2025-05-13', '2025-05-14', '2025-05-15'],
dtype='datetime64[ns]', freq='D')
date_range_str = date_range.strftime('%Y-%m-%d')
date_range_str
Index(['2025-05-01', '2025-05-02', '2025-05-03', '2025-05-04', '2025-05-05',
'2025-05-06', '2025-05-07', '2025-05-08', '2025-05-09', '2025-05-10',
'2025-05-11', '2025-05-12', '2025-05-13', '2025-05-14', '2025-05-15'],
dtype='object')
The difference is in the
dtype
of the two variables
print (date_range.dtype)
print(date_range_str.dtype)
datetime64[ns]
object
Displaying all the rows in Pandas DF
from IPython.display import display
with pd.option_context('display.max_rows', None):
display(pdf.head().T)